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Abstract

This work studies the behavior of certain test criteria in multivariate analysis of
variance (MANOVA), under the existence of multiplicity in the sample eigenvalues
of the matrix SElsH; where Sg is the matrix of sum of squares and sum of products
due to the hypothesis and Sg is the matrix of sum of squares and sum of products
due to the error.
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1 Introduction

Let A be a m x m symmetric matrix with spectral decomposition

A = HLH, (1)

where H is a m x m orthogonal matrix and L is a diagonal matrix, such
that L = diag(ly,...,l,). The representation (1) is unique if the eigenvalues
ly,..., 1, are distinct and the sign of the first element in each column is non
negative, Muirhead (1982, p. 588).

For A a positive definite matrix (A > 0), i.e. for Iy > -+ > [, > 0, the
jacobian of the transformation (1) has been computed by different authors,
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James (1954), Muirhead (1982, pp. 104-105) and Anderson (1984, Section
13.2.2), among many others. Similarly, when A is a positive semidefinite ma-
trix (A > 0),ie. whenly > - >0, >0and l,;,1 = -+ =1, =0, r < m,
the respective jacobian was computed by Uhlig (1994), see also Diaz-Garcia
et al. (1997). Recently, Zhang (2007), generalized the last jacobian for: non
positive definite matrices, —A > 0 or — A > 0; indefinite matrices; and
matrices with multiplicity in their eigenvalues. Unfortunately, these general-
izations have some inconsistences, but they have been corrected in Diaz-Garcia
(2007Db).

Note that under the spectral decomposition, the Lebesgue measure defined
on the homogeneous space of m x m positive definite symmetric matrices S;
(and implicitly the jacobian of the transformation (1)) is given by

(aA) = 27" [[(1; — 1;) ('aH) A (dL), @)

i<j
see Muirhead (1982, pp. 104-105), where

(H'dH) = \ Bjdh;, (L) = /}1 dl;.

1<j

and (dB) denotes the exterior product of the distinct elements of the matrix
differentials (db;;) and in particular (H'dH) denotes the Haar measure, see
James (1954) and Muirhead (1982, Chapter 2).

By applying the definition of exterior product, it is easy to see that under
multiplicity in the eigenvalues of the matrix A, i.e., l; = [, at least for a i # j,
we obtain that (dL) = 0, moreover, in (2)

m

H(Zi - lj) =0,

1<J

then (dA) = 0. This happens because the multiplicity of the eigenvalues of A
forces it to live in a (ml — [(I — 1)/2)-dimensional manifold of rank [ on the
homogeneous space of m x m S, , C S;f.

Observe that S is a subset of the m(m+1)/2-dimensional S,,, Euclidian space
of m x m symmetric matrices, and, in fact, it forms an open cone described
by the following system of inequalities, see Muirhead (1982, p. 61 and p. 77
Problem 2.6):

ail a2

A >0<ay > 0,det >0,---,det(A) > 0. (3)

a21 22



In particular, let m = 2, after factorizing the Lebesgue measure in S,, by the
spectral decomposition, then the inequalities (3) are as follows

A>O(:)l1>0,l2>0,l1l2>0. (4)

But if I; = Iy = p, (4) reduces to

A>0s0>0,0">0. (5)

Which defines a curve (a parabola) in the space, over the line I; = l5(= p) in
the subspace of points (1, ly). Formally, we say that A has a density respect
to the Hausdorff measure, Billingsley (1986).

When A € S, the eigenvalue distributions have been studied by several au-
thors, Srivastava & Khatri (1979), Muirhead (1982), Anderson (1984), among
many others. If A € S (q), i.e. A is a positive semidefinite matrix with ¢ dis-
tinct positive eigenvalues, the eigenvalue distributions have been founded by
Diaz-Garcia and Gutiérrez (1997), Diaz-Garcia et al. (1997) Srivastava (2003),
Diaz-Garcia and Gitiérrez-Jaimez (2006) and Diaz-Garcia (2007a).

In general, we can consider multiplicity in the eigenvalues of any symmetric
matrix, but in some applied cases (MANOVA problems) the eigenvalues are
always assumed distinct, for instance, Okamoto (1973) studies the matrix Sg
assuming that; N (the sample size) > m (the dimension) and the sample is
independent, i.e. the population has an absolutely continuous distribution.
However, recall that if SEUQSHS;/2 > 0 of rank » < m, then SEUQSHS;/2
has an eigenvalue A = 0 with multiplicity m — 7.

In the present work, we will not assume such conditions and then we will
study the test criteria for a general multivariate linear model. Explicitly, we
will consider multiplicity in the eigenvalues of the matrix Sg'Sy. In such case,
we propose the distribution of the non null distinct eigenvalues of the matrices
Sg'Sh or (Su + Sg) 'S, see Section 2. Finally, under certain conditions, we
provide a modified list of the classical test criteria involving the multiplicity
of the respective eigenvalues, see 7.

2 Multiplicity in MANOVA

Let &1,...,6,m and A, ..., A\, be the eigenvalues of the matrices Sg'Sy and
(Su+Sg) 'SH, respectively; where Sgr : m xm is Wishart distributed with vg
degrees of freedom, Sg ~ W,,,(vy, I,,) and Sg ~ W,,(vg, I,,). Various authors
have proposed a number of different criteria for testing the multivariate general



linear hypothesis, see Kres (1983)and Anderson (1984). Then all of the test
statistics may be represented as functions of the s = min(m,vy) non-zero
eigenvalues \'s and/or §'s, observing that \; = §;/(1+6;) and 6; = \;/(1—\;),
1 =1,...,s. Now, suppose that the eigenvalues \'s and ¢’s have multiplicity,
then, in particular we get: Ai,..., A\, \jy1, ..., A, such that 1 > Ay > -+ >
A >0and 1> Ny >---> )\ >0, thisis, [ < s < m denotes the number of
non null distinct eigenvalues of the matrix U = (Sg+Sg)~/?Su(Su+Sg) /2.
Consider the spectral decomposition of U, such that

U=HLH = (HH L0 H, =H,LiH, + H,L,H, =U,;+ U
= = (H;H,) | = il 1+ oo, = Uy 4 Us.
0 L, H)

We want to find the distribution of U; and the distribution of L;, where
L, = diag(\y, ..., \), Hy € Vi, = {H; € R™H|H, } (the Stiefel manifold).
Also observe that Uy € S} ;, so if | = vy < m, then by Uhlig (1994, Theorem
2)

(dUy) =27 f[ i ﬁ(li —1;)(H dHy) A (dLy)

i=1 1<j
where
(H,dH) = A A R.dh;, (dLy) = /\dlz,
i=1j=1+1

for alternative expressions of (dU;) in terms of other factorlzations see Diaz-
Garcia and Gonzélez-Farfas (2005a) and Diaz-Garcia and Gonzalez-Farias
(2005b). Under this context, the distribution of the non null distinct eigenval-
ues of U (the eigenvalues of Uy) is given by Diaz-Garcia and Gutiérrez (1997,
Theorem 2). Alternatively, if F = SEI/ 2SHS_1/ ?_ the distribution of the non
null distinct eigenvalues of F is given by Diaz-Garcia and Gutiérrez (1997,
Theorem 3).

Case m =2

Consider the case m = 2 such that the eigenvalues of the matrices U and F
have multiplicity, namely, Ay = Ao = XA and d; = d, = ¢, then from Diaz-Garcia
and Gutiérrez (1997, theorems 2 and 3),

AN = m< CNeEIR g<a<l, (6)
and
f5(6) = W(l +o)Eth2 0 <6, (7)



Now, recall the following test statistics of the literature, which are expressed
in terms of the eigenvalues X's and §'s, see Kres (1983),

(1) The likelihood ratio criterion A of Wilks,

A=T10-2 =TT 45

(2) The trace criterion of Hotelling and Lawley,

S

V= ; ' ii)‘i) ~ 34,

=1

(3) The maximal root criterion of Roy,

Amax

5max = T N -
(]- - Amax)

(4) The maximal root criterion of Pillai and Roy (Version due to Forster and
Rees),

6max

(1 + 5max) ’
(5) The trace criterion of Hotelling-Lawley-Pillai-Nanda-Bartlett,

)\max =

s s 5
Ve =S"\= —
5N )

(6) Third criterion of Wilks (S-criterion of Olson)

Y s
-n -1

For our particular case (m = 2, vy = [ = 1), the test statistics are given by
A=1=XN2%V =20, 6max = 6, dmax = A, V) = 2X and S = 62, and the
associated density functions are respectively,

1)
Dl + D/ y sy

fa(A) = A(pll) 2] 2, 0<A <1,
2 r 1)/2
9 r 1)/2
FranOos) = N0 B 2,0 B



Pllve +1)/2]

Smax (Amax) = m(l — )‘max)(VE_g)/z, 0 < Amax < 1,
(5)
s)\ F[(VE+1)/2] (ve=3)/ s
fro (V) = M (vp —1)/2] ( /2) , 0<V® <2
(6)
fs(s) = Lzt D2 (1+vE) ™ o<

o [(vg —1)/2]VS

The following six tables resume results on the six mentioned criteria: the
first two columns show the critical values of the corresponding criterion for
a = 0.05 (or (1 —a) = 0.95) and o = 0.01 (or (1 — a) = 0.99), when we
do not consider multiplicity in the eigenvalues; in contrast, the third and
fourth columns present the critical values for « = 0.05 and o = 0.01, when
we do consider multiplicity in the eigenvalues; and finally, the fifth and sixth
columns show the p-values for which the null hypothesis could be rejected or
accepted if the decision is taken in function of the critical values a = 0.05
and a = 0.01 computed without multiplicity of the eigenvalues, i.e. we use
the criteria distributions involving multiplicity for computing the p-values
associated to the critical values without multiplicity.

Table 1. Comparisons for the criterion A of Wilks

Critical value ® Critical value p-value
(non multiplicity) (multiplicity)
VE 0.05 0.01 0.05 0.01 0.05 0.01
2 6.41E-4 2.5E-5 6.25e-6 1.00E-8 | 0.150 0.070

5 0.117368  0.049316 | 0.05000 0.01000 | 0.117  0.049
10 0.367038  0.245660 | 0.264098  0.129155 | 0.105 0.042
20 0.614483  0.505819 | 0.522230 0.379269 | 0.099 0.039
30 0.724899  0.637459 | 0.661527  0.529832 | 0.097 0.038
40 0.786433  0.714476 | 0.735463  0.623551 | 0.096 0.037
60 0.852599  0.799984 | 0.816196  0.731824 | 0.095 0.037
80 0.887496  0.846188 | 0.859261 0.792016 | 0.094 0.036
100 0.909051  0.875081 | 0.885999  0.880218 | 0.094 0.036
440 0.978644  0.970243 | 0.973073  0.958908 | 0.094 0.036
1000 || 0.990552  0.986804 | 0.988077 0.981730 | 0.093 0.036

& From Table 1 in Kres (1983)



Table 2. Table of comparisons for the maximal root

criterion of Roy

Critical value® Critical value (1 - p)-value
(non multiplicity) | (multiplicity)

VE 0.95 0.99 0.95 0.99 0.95 0.99

13 12.23 20.36 3.885  6.926 | 0.99 0.999

21 10.78 16.90 3.492  5.840 | 0.99 0.999

26 10.24 15.64 3.385  5.688 | 0.99 0.999

31 9.95 14.98 3.315  5.390 | 0.99 0.999

41 9.59 14.20 3.231  5.178 | 0.99 0.999

51 9.39 13.77 3.182  5.056 | 0.99 0.999

61 9.27 13.50 3.150  4.977 | 0.99 0.999

81 9.12 13.17 3.110 4.880 | 0.99 0.999

101 9.04 13.01 3.087  4.823 | 0.99 0.999
301 8.79 12.49 3.025 4.676 | 0.99 0.999
1001 8.71 12.32 3.000 4.628 | 0.99 0.999

From Table 3 in Kres (1983)

Table 3. Comparisons for maximum root criterion
of Pillai and Roy (Version of Foster and Rees)

Critical value® Critical value (1 - p)-value
(non multiplicity) (multiplicity)

VE 0.95 0.99 0.95 0.99 0.95 0.99
5 0.8577 0.9377 0.7763  0.9000 | 0.9797  0.9961
15 0.4475 0.5687 0.3481  0.4820 | 0.9843 0.9972
21 0.3427 0.4479 0.2588  0.3690 | 0.9849  0.9973
25 0.2960 0.3915 0.2209  0.3187 | 0.9851 0.9974
31 0.2457 0.3290 0.1810 0.2643 | 0.9854 0.9974
35 0.2206 0.2972 0.1615 0.2373 | 0.9855 0.9975
41 0.1912 0.2594 0.1391  0.2056 | 0.9856  0.9975
61 0.1324 0.1821 0.0950 0.1423 | 0.9858 0.9976
81 0.1013 0.1402 0.0721  0.1087 | 0.9860 0.9976
101 0.0820 0.1140 0.0581  0.0879 | 0.9861 0.9976
161 0.0521 0.0730 0.0367 0.0559 | 0.9861 0.9977

From Table 5 in Kres (1983) and Anderson (1984, Table 4)




Table 4. Comparisons for trace criterion

of Hotelling and Lawley

Critical value® Critical value (1 - p)-value
(non multiplicity) (multiplicity)

VE 0.95 0.99 0.95 0.99 0.95 0.99
2 985.9 24670 798 19998 0.955  0.991

5 6.2550 15.318 6.9443  18.0000 | 0.941 0.986

10 1.5818 2.7402 1.8919  3.5651 0.927  0.979
20 0.6019 0.9236 0.7414 1.2475 0.918 0.973
30 0.3693 0.5479 0.4589  0.7475 0.914 0.970
40 0.2661 0.3886 0.3321 0.5327 | 0.912 0.968
60 0.1706 0.2454 0.2137  0.3379 | 0.910 0.967
80 0.1255 0.1792 0.1576  0.2473 | 0.909 0.966
100 || 0.0993 0.1412 0.1248  0.1499 | 0.909 0.965
200 || 0.0485 0.0684 0.0611 0.0947 | 0.908 0.965

& From Table 6 in Kres (1983) and Anderson (1984, Table 2)

Table 5. Comparisons for trace criterion
of Hotelling-Lawley-Pillai-Nanda and Bartlett

Critical value® Critical value (1 - p)-value
(non multiplicity) (multiplicity)

Vg 0.95 0.99 0.95 0.99 0.95 0.99
13 0.5666 0.7212 0.7860 1.0710 | 0.864 0.931
15 0.5070 0.6516 0.6963 0.9641 | 0.870 0.936
23 0.3562 0.4694 0.4768 0.6841 | 0.884 0.947
33 0.2593 0.3474 0.3415 0.5002 | 0.891 0.952
43 0.2038 0.2756 0.2659 0.3938 | 0.895 0.955
63 0.1426 0.1948 0.1842  0.2761 | 0.899  0.985
83 0.1096 0.1507 0.1409 0.2125 | 0.900 0.964
123 || 0.0750 0.1036 0.0958 0.1454 | 0.902 0.964
243 || 0.0384 0.0535 0.0489 0.0747 | 0.904 0.962

@ From Table 7 in Kres (1983) and Anderson (1984, Table 3)




Table 6. Comparisons for third criterion of Wilks
(Criterion of Olson)

Critical value® Critical value (1 - p)-value
(non multiplicity) (multiplicity)
VE 0.95 0.99 0.95 0.99 0.95 0.99

2 361.00 9801.0 159201 1.0E8 0.804  0.900
5 1.2426  13.2611 | 12.0557 81.0000 | 0.776  0.953
10 0.1559 0.4463 0.8947 3.1775 | 0.776  0.899
20 0.0291 0.0752 0.1374 0.3891 0.776  0.899
30 0.0118 0.0296 0.0526 0.1397 | 0.775 0.899
40 0.0063 0.0157 0.0275 0.0709 | 0.774 0.899
60 0.0027 0.0065 0.0114 0.0285 | 0.775  0.898
80 0.0014 0.0036 0.0062 0.0153 | 0.765 0.899
100 0.0009 0.0022 0.0039 0.0095 | 0.768 0.896
440 5.0E-5 0.0001 0.0002 0.0004 | 0.787 0.898
1000 1.0E-5 2.1E-5 3.6E-5 8.0E-5 | 0.793 0.898

& From Tables 6 in Diaz-Garcia and Caro-Lopera (2007)

For example with the criterion of Table 6, we conclude that a rejected (non
multiplicity) null hypothesis with a significance level of @ = 0.05, really reaches
an « > 0.2 when we consider multiplicity in the eigenvalues. Similarly, for a
rejected (non multiplicity) null hypothesis with o = 0.01, we really obtain
a > 0.1 if we consider multiplicity in the eigenvalues . Analogous conclusions
can be provided from Tables 1-5 for the remaining criteria.

Case m =3

Now, consider m = 3, vy = 2, namely, the matrices U and F have rank 2.
Also, assume that [ = 1, i.e. the non null eigenvalues of U (F) are equal,
A1 = Xy = X and §; = 03 = 4. In particular, we will study in this section
the behavior of the criterion A of Wilks. Then, by Diaz-Garcia and Gutiérrez
(1997), we obtain:

(1)

2l'[(vp +1)/2] \L/2
Vall(ve —2)/2]

2l[(ve +1)/2]
5) = 512
0= e - 22
Similar results can be derived for the joint distribution of A;, Ay and 47, d5 by

using Diaz-Garcia and Gutiérrez (1997). However, these are not necessary if
use the statements by Diaz-Garcia and Gutiérrez (2006) for the coincidence

£ = (1= A)esore

(2)

(1 + 6)7(VE+1)/2



of the non null eigenvalue distribution, via singular distributions (Diaz-Garcia
and Gutiérrez, 1997), and the respective non singular distribution, see for
example (Muirhead, 1982, Section 10.4, Case 2, pp.451-455). Then the critical
values of the cited criteria can be computed from the existing tables (vy < m)
by making the parameter transformation (m, vy, vg) — (vg, m,vg+vyg —m),
see Muirhead (1982, p. 455). Observe that for the criterion A of Wilks we do
not need to perform that transformation, because the critical values coincide
under both parameter definitions, see Anderson (1984, Theorem 8.4.2, p. 302).

Next we tabulate a comparison between the non multiplicity and multiplicity
critical values, and we also provide the p-values for a sort of vg.

Table 7. Comparisons for the criterion A of Wilks

Critical value ® Critical value p-value
(non multiplicity) (multiplicity)
Vg 0.05 0.01 0.05 0.01 0.05 0.01

2 0.000000  0.000000 | 0.00000  0.000000 | 0.000  0.000
5 0.243139 0.011210 | 0.009468 0.001078 | 0.131 0.056
10 0.514622  0.150746 | 0.156870  0.067583 | 0.113  0.046
20 0.647501  0.411734 | 0.429062  0.292612 | 0.105  0.042
30 0.723938  0.559656 | 0.577664  0.450770 | 0.102  0.040
40 0.807778  0.649620 | 0.666239  0.554541 | 0.101 0.040
60 0.852653  0.751990 | 0.765511  0.678456 | 0.100  0.039
80 0.880557  0.808282 | 0.819453  0.748957 | 0.099  0.039
100 0.971785  0.843804 | 0.853266  0.794241 | 0.099  0.039
440 0.978644  0.962428 | 0.964985 0.949572 | 0.098  0.038
1000 || 0.987475 0.983312 | 0.984469 0.977532 | 0.0938 0.038

@ From Table 1 in Kres (1983)

From Table 7 we see that for a rejected (non multiplicity) null hypothesis
with a significance level of 0.05 (0.01), we need a significance level of o > 0.09
(ov > 0.03) for rejecting the same hypothesis if we consider multiplicity in the
eigenvalues.

3 Conclusions

We highlight the variation of the criterion distributions, for testing hypothesis
in a general linear model, when multiplicity of the eigenvalues is considered.
The change is high in the sense that for rejecting a null hypothesis, in general,
the significance level « increases. A practical way for handling the inclusion of
multiplicity proposes the following modifications of the usual test statistics:

e Consider only the non null distinct eigenvalues in the computation of the dif-

10



ferent test statistics, namely, take [ instead of vg; and compare those values
with the tabulated critical values, but make the parameter transformation:

(mvl/H)VE)_)(m?l:VE)) ]—SZSVHSma
where [ is the number of non null distinct eigenvalues.

Finally, note that the present work considers only the case when vy < m,
otherwise the procedure for finding the distribution of the non null distinct
eigenvalues of the matrices U and F remains as an open problem.
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